A Scrum Introduction

Joseph Little

A Scrum Introduction

Joseph Little

This book is for sale at http://leanpub.com/ascrumintroduction

This version was published on 2019-06-22

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and
publishers with the Lean Publishing process. Lean Publishing is
the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have
the right book and build traction once you do.

© 2018 - 2019 Joseph Little

http://leanpub.com/ascrumintroduction
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Note on CurrentDraft 1
Introduction 2
WhatIsScrum? 3
Why Scrum? 7
ScrumRoles 12
The ProductOwner 12
The ScrumMaster 16
The Team Role (The “Implementers”) 20
The Whole Team 22
The Core SprintEvents 27
The Sprint 27
The Sprint Planning Meeting 28
The Daily Secrum 31
The Sprint Review 33
The Retrospective 38
The Artifacts 45
The Product Backlog 46
The Sprint Backlog 50
The Sprint Burndown Chart 51
The Release Burndown Chart 54

The Working Productand DOD 57

CONTENTS

The Impediment List 62
Product Backlog Refinement 65
Some Additional Topics 67

You Must Self-Organize 67

Putting It Together 68

Managersand Scrum L. 68

Changeand Scrum 69

ScrumValues 70

Ideas Behind Scrum 70
Recommended Reading 73
Some Relevant Sayings and Quotes 74

Feedback 77

Note on Current Draft

This is a nearly complete draft of this book. It is getting closer to
completion.

This is Ver 6.

We have some things to add. We have not proofread it enough yet.
We are starting to add pictures.

We welcome your comments now. You might see or have:

« atypo
« a topic (section) you think we should add
 a question.

Please send your comments to me at jhlittle@leanagiletraining.
com.

Thanks in advance for your feedback.

We want the book to be fairly short. Our initial goal was twice as
long as the Scrum Guide, but it looks like it will be a bit longer than
that. Readable probably in one day.

We want the main use to be: If you are about to take my CSM
course, you should read it and you can. Or, if you have just taken
the course, and want to remind yourself what you learned, it’s a
good summary of the basics. Of course, there are many other uses.

You can find the current version here! for now.

'http://www.leanagiletraining.com/info-joe/

mailto:jhlittle@leanagiletraining.com
mailto:jhlittle@leanagiletraining.com
http://www.leanagiletraining.com/info-joe/
http://www.leanagiletraining.com/info-joe/

Introduction

I built this book initially as a series of blog posts to explain quickly
what Scrum is. It turns out that Scrum is very simple, and yet
difficult to explain concisely.

The main purpose of this book is to give my course attendees a bit
more of an introduction than just the Scrum Guide.

It is key that this book remain short. For those who have special
cases or special needs, it will not answer every question. I am sorry
that it may not directly address your specific need, but I hope you
also see the value in it being short!

What Is Scrum?

Scrum is an Agile method co-created by Jeff Sutherland and Ken
Schwaber in the early 1990s.

It is a bare framework.

All the original Scrum teams did a LOT more than just Scrum, had
a lot more process or structure than just Scrum.

It was known then, and has been known since, to enable teams
to achieve greater productivity, to find work more satisfying, and
to produce wonderful products for customers. The original paper
at OOPSLA include dHyper-productivity in the title, that is we
know from much experience that it is possible to get 5x-10x the
productivity per person with Scrum than with Waterfall. Sadly,
this is far from happening every time. (Perhaps another book on
why that is so.) Still, we think you, if you get the right help and do
Scrum aggressively, can achieve very high improvements in many
dimensions, including productivity.

Scrum is not a miracle, it is not a panacea, it is no guarantee, but
teams regularly improve to a very impressive degree by using it.
We know it can help a team achieve hyper-productivity.

Scrum is one of many Agile methods. Agile methods are usually
defined as those methods that follow the Agile Manifesto and the
Agile Principles. (See AgileManifesto.org.) Jeff Sutherland and Ken
Schwaber were both active in the meeting in 2001 where the Agile
Manifesto and Agile Principles were created. They helped create
them.

One of the key things about Scrum is that it is simple.

Scrum is only providing a bare framework for a team to work.
With the fewest possible constraints, Scrum (and maybe some other
things) enables the team to pop up to a new level of functioning.

What Is Scrum? 4

What is Scrum essentially? This is hard to say. It was created by two
guys in New England who like to express themselves practically,
so you may have to experience Scrum for a while before you can
answer that question.

** A Game™*
Scrum is structured as a game. Thus, it is gamifying work.

This of course is not to make work silly, but to enable better things
to happen.

Among these better things is higher fun and happiness. We think
innovative and creative work, particularly, benefit by this kind of
gamification.

Team Sport

Scrum is a team sport. Scrum tries to enable a team to be more
successful, or at least to evaluate how they are doing, and then
decide what to do in their situation.

I mean a real team.

For example, all members of the team are expected to collaborate.
Each person is expected to take full ownership of success.

This does not mean that everyone is equal or that they all have
equal skill sets or skill in all areas. Together, they are taking on the
goal of success. They are taking on the vision as defined (usually
and mainly) by the Product Owner.

We are talking about a real team.

Virtually everyone in business has been told, “You are on team
X?” Mostly those are work groups or something similar — not real
teams.

Among the attributes of a real team in a professional setting is that
each member is 100 percent dedicated to only one team, the team
has a common purpose and all members of the team are invested
in that purpose and in accomplishing that goal.

What Is Scrum? 5

Team Roles

Within the team, Scrum defines three roles:

« Product Owner
o ScrumMaster
« Implementer (role)

Note that the current Scrum Guide calls the implementer role the
“team” role, which I think is confusing to beginners. It gives the
impression that there is a Dev Team within the Scrum Team. In
fact, the phrase Dev Team is used. I find this is not helpful. The
Scrum Team wins or loses together.

The Chicken and Pig Story

Short Note: My apologies if a little story like an Aesop’s Fable
offends you (we are told that some good people do take offense). At
least you must know that the purpose is, as with Aesop, to educate,
and not to offend. In my culture, it is not offensive. Far from
demeaning people or God, the purpose is to help people become
better.

Scrum lore has the “Chicken and the Pig” story. It is not used as
often as it once was.

I will not give the story here, but the idea is that the pigs are
committed, and the chickens are “only involved.”

The pigs refers to the people in the Scrum Team. Chickens are
people outside the Team.

From the point of view of the pigs, for the chickens to be “only
involved” isproblematic. A chicken is probably not as reliable as
we want that person be. Because the chickens have other things to
do, different priority 1’s to each chicken perhaps, they will be less
reliable — or there is a strong chance of a problem for our Team in
some way.

What Is Scrum? 6

This is not to say the chickens are bad. From their own point of
view, a chicken is doing important work, too. It’s just that when
the chickens are helping the pigs (us) with our work, the chickens
are less reliable. To the pigs, the work of the chickens is likely to
be late or the quality lower than they wanted or it is in some other
way “not quite what we wanted,” etc.

But we find chickens are always necessary. The Team can never, in
my experience, complete their work without some help from some
chickens. To be fair, often the Team can find other chickens — or do
some of that work themselves in a pinch — but often enough, the
Scrum Team finds their own success significantly dependent on the
chickens.

Thus, we the Team must manage the chickens well. This “we”
includes the Implementers, the PO, and the ScrumMaster (because
sooner or later the weak delivery by a chicken will become a key
impediment) and the organization.

Roles Outside the Scrum Team

I want to mention now two more roles outside of the team.

« The Customer: Customers are the real people who will
use our product. They may be internal or external to the
organization we work in. It is in delivering something won-
derful to them that we get the greatest satisfaction. Typically,
customers are in “pain” (in some sense or other) and we
are delivering pain relief. One can appreciate the urgency in
doing that.

« The Business Stakeholders: I use this term to represent the
people that must work with the team part-time, and especially
be there for every Sprint Review to give feedback. I will talk
more about them later. I think of the business stakeholders as
a type of chicken.

Why Scrum?

Why Scrum? How did it get here? How do we understand it? How
do you explain it to your colleagues?

Why Was Scrum Invented?

The way I understand it, Jeff Sutherland became a software devel-
opment group manager at some point in his career. The group was
doing waterfall. Projects were failing. It was hard to understand
what the real problems were (little or no transparency). People were
demoralized. It was a mess, which is fairly typical for waterfall.

His reaction was that “there must be a better way”. (Not sure if he
used those exact words, but essentially that.)

So, Scrum is a reaction to the pain, stupidity and unhappiness of
waterfall.

Or, to put it a better way, Scrum is an attempt to do several things
at the same time — bring some fun back to work, give us a sense of
mission, enable us to see that we have some traction, improve our
productivity (without working harder), reduce our stress, and give
us the transparency we need to make our own lives better.

What Are the Ideas Behind Scrum?

There are many ideas behind Agile and Scrum, and I daresay
that Sutherland and Schwaber could not accurately remember in
1999 all these ideas nor where they came from. People are easily
influenced and can sometimes forget where those influences came
from.

Scrum is a very interesting mixture of very simple ideas (e.g.,
KISS or Keep It Stupid Simple) and complex ideas (e.g., Complex
Adaptive Systems ideas).

Why Scrum? 8

Scrum was invented before the Agile Manifesto and Agile Princi-
ples were articulated in 2001. Still, Schwaber and Sutherland were
there at Snowbird in 2001 when the Agile Manifesto and Agile
Principles were defined. Scrum “follows” those Agile ideas. Read
the Agile Manifesto® and Agile Principles and think about those
specific ideas.

Scrum was also strongly influenced by many other ideas. Early
on, maybe before any experimental teams, they read a particular
Harvard Business Review article. So, one set of ideas comes from
“The New New Product Development Game*” article by Hirotaka
Takeuchi and Ikujiro Nonaka.

Here are the six ideas described there:

Built-in instability

Self-organizing project teams
Overlapping developmental phases
“Multi-learning”

Subtle control

Organizational transfer of learning

A

I strongly recommend that article and almost any article or book
by Takeuchi and Nonaka.

Let me mention again the Complex Adaptive Systems ideas. See
this link in Wikipedia® for a start.

I am convinced that Peter Drucker’s idea about knowledge workers®
and similar ideas had a significant impact on Scrum (directly
or indirectly). Note that Takeuchi’s, Nonaka’s and others’ ideas
around knowledge creation are also related or similar.

In my opinion, Scrum is mainly about people. That is, Scrum is
an attempt to enable smart people to work together much more

*http://agilemanifesto.org/

*https://hbr.org/1986/01/the-new-new- product-development-game
“https://en.wikipedia.org/wiki/Complex_adaptive_system
*https://en.wikipedia.org/wiki/Knowledge_worker

http://agilemanifesto.org/
https://hbr.org/1986/01/the-new-new-product-development-game
https://en.wikipedia.org/wiki/Complex_adaptive_system
https://en.wikipedia.org/wiki/Knowledge_worker
http://agilemanifesto.org/
https://hbr.org/1986/01/the-new-new-product-development-game
https://en.wikipedia.org/wiki/Complex_adaptive_system
https://en.wikipedia.org/wiki/Knowledge_worker

Why Scrum? 9

effectively to build complex products. (It can also be used to build
simple products.) So, embedded in Scrum are many ideas about
people, how they work and how they might work together better.

Agile is sometimes thought of as being overly optimistic about
people. Perhaps so about the Agile community. Not so, in my
opinion, about Scrum.

Scrum is not overly optimistic. It does not assume that people are al-
ways perfect. Scrum seems well aware that humans have strengths
but also have weaknesses. Examples: We are easily distracted, and
we tend to procrastinate. So, Scrum does a few things to address
these likely issues. On the other hand, Scrum is somewhat positive,
in that it assumes that usually people can work together effectively
and do things to become more effective together.

Schwaber talks a lot about the empirical process®. That is, in our
work we should not use a defined theoretical modeling approach
(waterfall), but rather an empirical process that requires and sup-
ports us in inspecting (using transparency) and adapting quickly.
Inspect and adapt is the short version.

Experiments

Scrum did not arise from Sutherland and Schwaber sitting at the
top of a mountain thinking big thoughts. As I said, I think it arose
from a hard, practical reality: waterfall sucks. And then they looked,
read, sought and, then, experimented. It was the experiments that
showed them they were on to something. They did not believe just
the ideas — they believed the results from the first teams.

One could say that at least some of the talk is an attempt ex post to
explain why the experiments worked.

All of Scrum

What we do know for sure is that many have played Scrum, and
that a good percentage of them — if they do “all” of Scrum (or as

“https://en.wikipedia.org/wiki/Empirical_process_(process_control_model)

https://en.wikipedia.org/wiki/Empirical_process_(process_control_model)
https://en.wikipedia.org/wiki/Empirical_process_(process_control_model)

Why Scrum? 10

close to all as we can reasonably expect) and do that professionally
with rigor — tend to get amazing results; five to ten times better
than waterfall fairly quickly.

To the degree they do not do “all” of Scrum, the results come down
quickly from amazing. Still, even “half-baked” Scrum tends to get
them 20 percent better results. An excellent return on investment
from a “small” change.

But Wait, There’s More...

There are many more ways to explain Scrum, help others under-
stand why a piece of Scrum helps or talk about why Scrum works.

Here are a few ancient sayings (perhaps one not so ancient):

« “Two heads are better than one.”

« “The whole is greater than the sum of its parts”
« “Many hands make light work”

« “Live and learn”

« “Go confidently in the direction of your dreams!” —Henry
David Thoreau

We plan to write another book about the ideas behind Agile and
Scrum, such as the ideas above.

Note that Sutherland and Schwaber both live outside of Boston, not
far from Concord, Massachusetts where Thoreau lived. No doubt
they were to some degree influenced by New England and Boston
culture (which of course still includes Emerson and Thoreau).

There still remain many more ideas that will help you explain
Scrum. I enjoy using about half of the Yogi Berra quotes to explain
Scrum. It helps, I think, to use a humorous method for getting the
concepts across. Two examples: “It ain’t over till it’s over,” and,
“When you come to a fork in the road, take it.”

You will have to use all these methods and more to explain and
explain. Because after a bit of time, your team will forget why

Why Scrum? 11

they are doing the different parts of Scrum and, quite often, if they
cannot explain to themselves why they are doing it, they will cease
doing it. You, as the Agile advocate, must remind them again and
again.

Scrum Roles

We mentioned earlier that a Scrum Team is composed of people in
one of three roles.

A team should be seven people normally (or start off at seven). We
shall explain later why we recommend that number.

The Roles are:

« One Product Owner
e One ScrumMaster
« Five Team role persons

The Scrum Guide does not “require” you to have a fully dedicated
team. I think if you read it carefully, you will see that they are
urging you to have a fully dedicated team — and a stable team
at that. I strongly suggest that you do that, and I know that Jeff
Sutherland strongly encourages that, as well.

The key reason: life is simpler for everyone. One team, one goal.
There are several other reasons.

Now let’s start to explain each role.

Let’s start with the Product Owner.

The Product Owner

The Product Owner (PO) ultimately owns the quality of the Product
Backlog. But, before that, he is responsible for articulating the
vision of what the Scrum Team is trying to accomplish. He or she
must explain the vision in such a way that the team is inspired —
not everyone can do that.

Scrum Roles 13

Then, the PO enables everyone to contribute to the Product Backlog
and tries to do things (e.g., talk to people in various ways) to assure
it is the best possible Product Backlog and will fulfill the vision.

Scrum does not define clearly what a great Product backlog might
be. But it might identify the relatively few high value and low(er)
cost features (stories) that we might deliver quickly. At least com-
pared to what a less clever PO would have in the same situation.

The PO is the final decision maker on the priority order of the
Product Backlog.

This is perhaps the most essential attribute of the PO. For example,
the Business Stakeholders may offer their opinions. Typically, they
disagree with each other. So, the PO must take the best information
available and decide — and decide quickly. Decide under conditions
of uncertainty. Not every person is naturally decisive, but the PO
must be.

The PO should inspire the team. I said it above, but let’s emphasize:
The PO should explain the vision and everything else so well that
of course the others on the team feel that this product is something
that they want to do.

Note: When we discuss the Team, we will deal with the possibility
that some Implementers are not inspired.

We call the items in the Product Backlog PBIs (product backlog
items).

The PO must help the organization develop the details about the
PBIs. These details go to the team, so they build the right thing
(rather than the wrong thing). And mostly build it sooner rather
than later. Getting all the right people to give all the right details in
a timely manner, just enough, just in time — this is almost always
something that the company is not good at doing at first. And, to
be fair, it is just hard to do. Even the customers do not know what
they want (the full solution) and do not even explain the problem
very well. Again, to be fair, these problems also are quite common.

Scrum Roles 14

The PO must work with the rest of the team daily. For example,
every day the team members may have questions about the “re-
quirements” (at least this is very typical) and the PO must answer
them all quickly. Ideally in 10 seconds, but 10 minutes would be OK
— 24 hours should be the limit. Why? To maximize the productivity
of the Team, so that the customer gets a faster delivery. But, to
be fair, answering within 24 hours in a large organization can be
tough. Overall, we need a much faster turnaround. The PO must
start making this happen.

So, the PO must be a change agent.

The PO likes to work with the “geeks.” (I am teasing now about the
divide between “the suits” and “the geeks” that many firms have
now. We want them to learn to collaborate. Or collaborate much
better.)

The PO should like to learn about technology. This is important for
her or him to order the Product Backlog better.

The PO is working with others outside the team on what I call
Release Plan Refactoring (AKA Grooming or Refinement). The
Scrum Guide calls this Product Backlog Refinement. Other names
for this rough type of work are product backlog grooming and pre-
planning.

The PO has to “herd the cats” — the Business Stakeholders. (I
recommend four of them. We will discuss them later.) This is often

hard.

The PO is a kind of leader, but the PO is not the leader of the team.
The PO leads, of course, in deciding how to prioritize the Product
Backlog. The PO leads by inspiring, and by articulating the vision,
but the PO does not lead the Team in any other way.

In general, we typically want the PO to come from the business
side. Several good things typically result from that. It can also be
OK if he or she comes from technology (or whatever your firm calls
it).

Scrum Roles 15

In general, we expect the PO to understand these areas well:

« The customers (internal and/or external)

+ The customers’ problem(s)

« The current product (or product set)

 The competition

+ The business model

« The business situation

« The people on the business side (who understand all these
things and the details well — so that the PO can, for example,
help pull together the right details for the team).

In general, we expect the PO to not know much about technology
at first. But by working with the team, the PO starts to understand
technology better and better with time. So, the PO is willing to learn
about Technology.

How Much Allocation?

How much should the PO be allocated? In general, always more.
This is a key problem.

If they have a 100 percent allocated team of seven (I usually recom-
mend seven), then the PO also should be 100 percent allocated to
the one team. It makes a huge difference!

For example: One of our key problems is always unclear require-
ments. It is up to the PO to address this issue well. It’s a lot of work.

In general, a 1 to 7 ratio of allocated hours is a reasonable ballpark.
(One PO hour for every 6 hours from the five Doers and the
ScrumMaster.)

Over and over and over... one of the biggest impediments is that
the business side has not allocated enough time of the person
who is playing the PO role. At first, this is universally the biggest
impediment (or as near universal as anything can be).

Scrum Roles 16

You can backfill some if the PO is not 100%. For example, you can
add a business analyst to the team or maybe a couple of part-time
business analysts outside of the team, and that can make things
somewhat better for a while.

You also really need more of the PO. (One guesses about your
situation from lots of experience.) A good, highly allocated PO can
improve the productivity of the team enormously and is well worth
the expense.

One can imagine circumstances where it might be better to have
a PO allocated part-time, for example, if the whole team is only
four people including the PO. In general, I am not an advocate of a
part-time PO.

Still, it pays to have the PO allocated full-time if the team is working
on an important project. (Well, they are working on one of the top
projects in the company, right?)

Related: New POs are never very good. The person is normally very
good at the old job, but the PO role is notably different. The new
person needs help in riding quickly up the learning curve; as I say
it, to try to emulate the Wayne Gretzky of POs. This is hard to do
if your company has no Wayne Gretzky of POs. (Wayne Gretzky is
call the Great Gretzky because many considering the best hockey
player ever.)

In any case, get the new POs more training and coaching and other
help to become better. It is trouble, but it is very much worth it.

The ScrumMaster

The ScrumMaster is a hard role to explain, I think. It is easy to
misunderstand, and in fact it is commonly misunderstood.

The ScrumMaster (SM) must first help the Scrum Team learn how
to self-organize. Self-organizing is a thing we as humans all do, and

Scrum Roles 17

we all can do more. And, most of us can do it competently in a small
group.

It is impressive how much we have been taught not to self-organize
at work. Of course, this varies very significantly per team (and
per person). Some teams pick up self-organizing quite easily —
other teams struggle with this in part because other people (often
managers) outside of the team inhibit the self-organizing or simply
because old habits tell them they should not or cannot self-organize.

In any case, probably the first duty of the SM is to help the team
self-organize better.

Related to this, the SM must teach the team to be more honest —
and not only the team, but everyone around that team that affects
the team. This is a hard task. We humans tend to avoid unpleasant
truths.

We are not asking that everyone always talk bluntly about unpleas-
ant truths. But, for the team to self-manage, it must have more of
the truth. For the team to identify the biggest impediment, they
must be more honest, etc., etc. We can manage better if we have
more of the truth. And for humans, this is hard for many reasons.

Maybe the third duty is to protect the team from distractions.
This, of course, is in some sense an impossible task — to eliminate
all distractions. But to reduce distractions significantly is actually
quite easy.

To reduce some important distractions can be challenging. For
example, sometimes managers introduce distractions (in my opin-
ion, usually not their opinion at first). Some managers in some
situations seem to want to distract the team. The manager may
be senior and may feel he or she is helping the team. The SM
may know it is not helping the team. That conversation might be...
challenging.

Because the SM protects the team from distractions, we often call
the SM the sheepdog. (Anyone can assist in protecting the Team

Scrum Roles 18

from distractions — but this is considered part of the job of the
SM.)

Next, the SM teaches the team and the organization about Scrum.
He or she is explaining it all the time. They forget, they seem to
actively misremember or they interpret it wrongly; often coming
from the waterfall paradigm. So, the values, principles and practices
of Lean-Agile-Scrum must be explained over and over and over and
over.

The SM, more broadly, must remove impediments — better said: get
impediments removed for the team so that the Velocity increases
significantly. Sutherland says an average SM should be able to
increase Velocity 100% in the first 6 months. Longer-term, we expect
virtually every team to become hyper-productive. That means,
productivity has increased 5x to 10x from the baseline.

At the same time, happiness should be higher (see the Happiness
Metric”), Business Value should of course also be significantly up,
and quality should be improved. And hours probably lower.

An impediment is anything that is slowing the team down. The
Impediment List should include the top 20 or so impediments —
areas where we, the organization or life need to improve — so the
team can be better.

An impediment is not only a distraction, not only a blocker to
one story, not only a system down problem, not only... anything.
An impediment can be anything that is slowing down the team:
people issues, anything that a team member is not perfect at do-
ing, problems with management, organizational issues, insufficient
automation of the testing, technical issues, etc.

One of the key impediments is that the PO sucks. That is, that the
very good person in the PO role is not used to this very different
role. The SM must get help for the PO until he or she becomes a
good to excellent PO.

"https://www.scruminc.com/happiness- metric-wave- of-future-2/

https://www.scruminc.com/happiness-metric-wave-of-future-2/
https://www.scruminc.com/happiness-metric-wave-of-future-2/
https://www.scruminc.com/happiness-metric-wave-of-future-2/

Scrum Roles 19

Who fixes impediments? Well, obviously a typical SM is good at
fixing certain types of impediments himself or herself, but no SM
is good at fixing all types of impediments. Also, the team can and
should invest some time in fixing impediments. They can fix their
own problems, and this feeling of self-reliance is a good thing
morally.

Also people outside of the team (managers, consultants, whatever)
can be excellent at fixing certain types of impediments. Including
people outside the company (eg, external consultants).

The SM has to draw on all these different people and get them
to fix the impediments in priority order. He or she has to do this
with no authority, no power. The SM must convince with logic and
reasonable persuasion.

On a professional Scrum Team, the SM should be full-time. (There
is no Scrum rule in the Scrum Guide that says that, but then, the
Scrum Guide is silent on many things.) If the SM is one of seven
people, then we are devoting about 1/7th of the team’s power
toward continuous improvement. This is a bit over 14 percent of
the team’s time. This seems reasonable and fair. Especially if, by
investing in this way, we get 100 percent improvement in team
productivity in a year (or less).

There is always a tremendous amount of improvement to be made
— everything can be made better in some way. In Lean, an idea
is expressed as the relentless pursuit of perfection. The people can
become more skilled in all the hard and soft skills. The team can
always work more effectively together. The impediments coming
from outside the team always need more fixing. The only question
is how to prioritize the impediments. Then the next question is:
What is the best solution for each impediment? Best meaning
mainly best return-on-investment — the cost of fixing over the
benefit of fixing.

It is January, so an American football metaphor. Even the Team that
wins the Super Bowl knows that it has impediments, knows that it

Scrum Roles 20

needs to improve the next year. Your Team has not won the Super
Bowl yet. I am willing to bet. Keep improving.

I hope the SM job has become a bit richer now.

The Team Role (The “Implementers”)

The next role is commonly called the team role.

I am not happy with the name. There is only one team worth
talking about: the whole Scrum Team, including all three roles. The
whole team wins or loses together because of all the efforts of all
the people, including those who support the team (that is, people
outside of the team, too).

So, T call the people in the team role the “Doers” or the “Imple-
menters.”

Who Are the Implementers? What Do They Do?

Well, if the total team is seven people, then five will be the
Implementers. The five Implementers should have all the skill sets
to build and verify and validate the product. In software terms, you
must have at least coders and testers. This is important and often
misunderstood. A Scrum Team doing software must include testers.
For a story to be completed and working by the end of the Sprint, it
must be professionally tested (and the bugs fixed) by professional
testers during the Sprint.

Again, the Implementers should have all the building, verifying and
validating skill sets for whatever product the team is working on.

Does This Ever Happen?

In my opinion — never. The team always has most of the skill sets,
but not all. So, the Implementers must rely on people outside the
team to provide, one way or another, some of the skill sets.

Scrum Roles 21

How Much Are the Implementers Lacking?

We should hope they have 99 percent or 98 percent or 95 percent of
the skill sets. This happens. Or maybe 90 percent. But not always.
We will not bother to define 90 percent coverage, but to me, at about
that level, the team is seriously compromised in terms of doing
quality work in a tight timeline. Almost always, fast delivery is
what is wanted. So, the Implementers must be honest about where
they are lacking skill sets. Again, getting humans to be this honest
is challenging.

Each implementer must be team players, as we say. The team must
help each other, and the strongest person must teach the others the
skill set that he or she is strongest in. (Well, use common sense,
which is very uncommon.) But the key thing is that it is about
the team success and not about what an individual did. (We are
not against recognition for individuals, but we want the team to be
stronger. This is a team sport.)

Taiichi Ohno (famous for Lean) is famous for using the rowing
metaphor. They must all row together in the same direction to
be successful. I am not sure the rowing metaphor, as with any
metaphor, is completely apt in every circumstance, but we think
in America at least it needs to be repeated and discussed more. (See
“Toyota Production System®” by Taiichi Ohno.)

If a team has a dominant individual who will not let the team work
together, then ultimately the SM must get that person removed from
the team. At least *very *commonly that turns out to be the correct
solution. Often that person is clearly the most talented person on
the team on paper. And most people think so, and yet, paradoxically
to some, once that person is removed, the team’s Velocity goes up.

®https://books.google.com/books/about/Toyota_Production_System.html?id=7_-
67SshOy8C

https://books.google.com/books/about/Toyota_Production_System.html?id=7_-67SshOy8C
https://books.google.com/books/about/Toyota_Production_System.html?id=7_-67SshOy8C
https://books.google.com/books/about/Toyota_Production_System.html?id=7_-67SshOy8C

Scrum Roles 22

Should the Team Include a BA, an Architect, a DBA,
anXorayY?

It depends. It seems to work sometimes. It seems not to be necessary
all the time.

Overall, it really helps to have a great team. In this statement, we
mean not only those in the team roles but also the PO and SM and
how they all work together.

If you already understand Scrum as a team sport and you under-
stand team sports, my statement is completely obvious and almost
silly. It is remarkable how many companies (apparently) do not
understand these basics about teams.

The Whole Team

The team needs to be considered on its own.

The team is the whole Scrum Team. Normally that would be about
seven people — including the PO and the SM — and normally the
team would be a full-time, real and stable team.

Why?

First, we assume you are working on one of the top “things” for
the company or at least your department. Why work on anything
less important? We assume that that top priority needs to be done
quickly, both for the company’s sake and for the customers.

Then, the ratios of PO to Implementers and SM to Implementers
are better if the whole team is seven people. Also, we have enough
people to cover more of the required skill sets. Lastly, seven is about
as big as you can get and still have good communication throughout
the team, so that everyone knows what each team member is doing.

Next, a team has a separate identity. Hence, we must consider it as
a separate thing.

Scrum Roles 23

Now let’s consider a few topics about the team.

Historically, “The Chicken and the Pig” story was part of the Scrum
Guide. The main point of the story was to distinguish between the
committed and those only involved. This is an important and useful
distinction.

The Scrum Team is the committed, and they are responsible, as
adults, for full and complete success in all the dimensions that
real success requires. They should have all the right stuff to be
successful.

Who Forms the Team?

Scrum does not address this question. Just as it does not answer
many important questions.

But let me make a suggestion. First, there is you, or who you should
be — that is, you should be the best Scrum person in your company,
or at least your area. You may have some power or authority or
rank... or maybe not.

Usually the team members are chosen by the managers. We recom-
mend at least three managers because this is a hard and important
task and three heads are better than one. We also recommend that
you advise those managers — who typically are not Scrum experts
— on how a Scrum Team works, how the team should be set up
for success, how the team will be responsible for full and complete
success, what a PO does, what a SM does, what the Implementers
do, etc. You must help them see the importance of team chemistry
if they do not.

Hopefully they then select a good team.

One good thing about Scrum: You find out quickly how good the
team is. Usually within three Sprints you have a fairly good idea.

The Involved or “Chickens”

Now we must talk about the “involved,” or what might be called
the extended team.

Scrum Roles 24

We find that every Scrum Team always needs the assistance of
others — always — and that that assistance is critical to success. The
assistance could come from individuals, departments, other Scrum
Teams, vendors, etc.

But it is very important that everyone recognize the importance of
the “involved.”

First, the Scrum must help identify the chickens and prioritize them.
Then, the Scrum Team must do their best to manage the chickens.
If further management is needed, the organization or organizations
involved must also step in to make success more likely.

The involved are generally not very reliable vis-a-vis the mission
of our Scrum Team. This trait arises from the fact that they are just
not committed. To the involved, the work of our Scrum Team is
not their main thing. And normally, those who are “only involved”
regarding the work of our Scrum Team have other work that is their
own top priority (in some sense or another).

Typically, some of the involved will prove more reliable than others.
The team must monitor them and do what they can to help assure
that the involved deliver on a timely basis and with high quality.

What do the involved deliver to our Scrum Team? That too can
vary quite a lot. Perhaps the involved provide knowledge or advice.
Perhaps they write some code. Perhaps they do some work. Perhaps
they build (and test) some (small) component of the bigger product
that this Scrum Team will deliver.

Business Stakeholders

Among the other involved we want to call out the Business Stake-
holders (BSHs). Among the key tasks of the BSHs is to come to
the Sprint Review and give useful and complete feedback. The bad
news does not get better with age.

We recommend that you have about four BSHs. That number gives
you many hands on the elephant, and the PO and the BSHs are
more likely to get a quick and complete view of what the customer

Scrum Roles 25

wants and what the business wants. This understanding is hard and
important, and we do not normally recommend fewer than five
(and not more than seven in total either). That is, the combination
of BSHs and PO.

When I say BSH I probably mean someone notably different than
what your PMP may mean. I mean people who can give high level
feedback, about the Business Value of each story, as well as low
level detailed feedback about every detail of each feature; or who
can bring people who can. And a BSH must come to every Sprint
Review (as much as anyone does anything every time). This is rare
and hard to find but essential to high success.

It bears repeating that Scrum is a team sport. It is all about the
team. That chemistry wherein they work together and also with
the involved is quite important. It’s also important to note that as
a team they rise to the occasion and take on the responsibility of
delivering a wonderful product. One might call this the character
of the team.

Who Leads the Team?

Scrum defines this a bit, but perhaps mostly relies on emergent
leadership. (This is a phrase that Jeff Sutherland uses.) Note we call
it leadership, not “boss-ship.”

The PO is the leader in the sense that he or she can decide how to
order the Product Backlog. The SM is a leader in terms of servant
leadership. And servant leadership might be simplified into helping
the team get one impediment fixed at a time.

In general, we recommend a team of strong players who are all
adult.

Thus, it is possible that any one person could (briefly) be a leader
of the team in one area or another, from one hour to the next, or
that, in the heat of battle, any person could rise up and lead the
team in its moment of crisis. It is this type of team, with aggressive
play and risk taking along with emergent leadership, that tends to

Scrum Roles 26

be more successful in our kind of knowledge work.
Ask the Team

Once the Team has been formed or at least named, ask them if they
feel they are set up for success.

This is not a bad question to ask from time to time. But also ask it
at the beginning. Sometimes they will reveal the obvious problems.
The sooner we start working on the obvious problems, the better.
(Only the problems will not become obvious until they mention
them...then, everyone agrees “that was obvious”.)

Can they be successful together? Do they have everything they
need to be successful? Have they been set up, in some way, for
failure? Do they need anything? They must be adult enough to
insist on getting the things they will need for success. Those
things needed might include: the assistance of other people, books,
training, knowledge, tools, etc.

The Core Sprint Events

The Scrum Guide defines the main events as:

« The Sprint Planning Meeting
o The Daily Scrum

+ The Sprint Review

« The Retrospective

There is no restriction on the Team having other events or meetings.
Just make sure they are worthwhile.

We also recommend, in a 2 week Sprint, two Product Backlog
Refinement meetings. See the Product Backlog Refinement chapter.

You as an agile advocate and the SM particularly, mist make
these core Scrum events or meetings valuable. Get all the value
possible from them. In general, people are professional (and well-
experienced) at having meetings that suck. This is an uphill battle
for the SM.

We start with an explanation of the first, larger time-box: the Sprint.

The Sprint

First, the Sprint is an important time-box (one of many time-boxes)
where the team must build working product and then get feedback
on what they have built at the end of Sprint. This concentrates their
minds wonderfully.

For most teams, we strongly recommend a two-week Sprint. Here
are my reasons based on certain expectations that you can get the
following to happen. The managers will come to the demo every

The Core Sprint Events 28

time, there is enough to show, and it enables faster feedback. The
bad news does not get better with age. On rare occasions we might
recommend a one-week Sprint or a four-week Sprint. Even more
rarely, we might recommend a different length.

Scrum has four defined meetings and all these meetings happen
within a Sprint:

The Sprint Planning Meeting
+ The Daily Scrum

+ The Sprint Review

+ The Retrospective

In simple terms, you start a Sprint with the Sprint Planning Meeting
and end a Sprint with a Retrospective.

The Sprint Planning Meeting

Before the Sprint Planning Meeting (SPM), there must exist a
Product Backlog with small Product Backlog Items (PBIs) at the
top of the list. The PBIs must be estimated.

Specifically, we recommend User Stories and estimating using story
points. We also recommend that the business stakeholders (BSHs)
and the whole Scrum Team attend.

For a two-week Sprint, the maximum length is 4 hours.
I divide the meeting into two parts (Stories and Tasks).
1. Stories

The first part I call Stories. In this short part, everyone together
reviews and agrees on the stories in the Sprint.

The Implementers get to decide how many stories are pulled into
the Sprint (although the PO gets to decide the order).

The Core Sprint Events 29

Everyone can see all the information we have on each story, ask
questions, as well as add or clarify any information.

While we hope this would have happened before, the Implementers
can reject any story they think is inadequate (where we do not have
sufficient information to build it).

As each story is discussed briefly, the PO says to the BSHs (one or
more), “Speak now or forever hold your peace” That is, any BSH
must say now any detail that he or she might complain about later.
If they are unhappy in the Sprint review, it is likely because they
did not speak up in the SPM. So, the PO makes that clear now.

Again, the Implementers get to decide how many stories can be
brought in this Sprint. The typical main factor is that if the average
Velocity is 20, they are likely to bring in 20 story points of stories
— unless there is a good reason to be above or below that (such as
an impediment has been fixed and we expect the Velocity to start
to be higher).

It is important that all the top stories are small and about the same
size. We recommend that a typical Sprint (for a team of seven) has
at least eight stories. With a Velocity of 20, that means a typical
story would be two or three story points in size.

This stories have typically been pre-planned before (in some prior
meeting) and this section is mostly a final review. So, typically, this
is done in 45 minutes or less. The BSHs can leave after the first part
is complete. This is, in part, why we want it to only take 45 minutes
(or maybe an hour at most).

2. Tasks

The second part is what we call Tasks. By task we mean a set of
work; when we do a few tasks together, the tasks complete a story.

The story has Business Value (at least in the eye of the PO) and a
task by itself does not deliver Business Value. To put it another way,
we can demo a story and get feedback, but it is not useful to demo
a task.

The Core Sprint Events 30

Each Implementer creates his or her own tasks, although people can
work together. Each task should typically take 2 hours. (A few are
as short as 1 hour, and a few might be 3 or 4 hours, and rarely as
long as 6 hours.) The key thing is that short tasks allow each person
and the other members of the team to feel some completion — some
traction — each day by each person.

The small tasks also force people to admit their impediments in the
Daily Stand-up. Sometimes the only real impediment is that [am
bad at estimating, but even that is a learning experience, and we all
become better at estimating the tasks.

“If you want to change the world, start by making your bed.”
“One small task done leads to another small task done.”

New teams are usually very bad at first at creating the small tasks.
But as Goethe said, “Everything’s impossible until it becomes easy.”
That is, when we don’t know how to do it, it is impossible for us.
As we learn and practice and practice, it then becomes easy.

So, each task is described, volunteered for, and estimated.

After the individuals have created all the tasks, we enable everyone
in the team to see the whole Sprint Backlog (the stories and their
tasks). Anyone can now ask to change it, describe an item better,
re-assign a task (in fact that can be done at any time during the
Sprint), re-estimate a task, and even add or eliminate tasks.

With the Sprint Backlog improved, the team can now commit.

I prefer to do this with fist-to-5 voting by each implementer.
Showing a fist equals zero — no confidence. Showing five fingers
equals maximum confidence that the team can get all X stories
fully completed in this two-week Sprint. We want each of the
Implementers to have at least three fingers showing.

If we do not get that level of of confidence on the team (Imple-
menters), then either the Sprint Backlog needs to be discussed or
improved, or the number of stories reduced, or possibly increased
if they feel that is reasonable.

The Core Sprint Events 31

Commit does not mean guarantee. With normal (good) stress, with
about 40 hours per week, with faster response to questions and
a SM dedicated to fixing impediments, the team should become
70-80 percent reliable in meeting their commitments. That means
for about seven or eight Sprints out of 10, the team should get all
the stories (or perhaps all the story points) that were committed to
done-done.

If they fulfilled their commitment 100 percent of the Sprints, that
would be too high — below 50 percent is actually more unreliable
than reliable. A lot of good disciplines occur when the team learns
to promise what they usually can complete. As one example, it
forces them to minimize WIP, at least to some degree. It forces them
to learn to estimate decently. It forces them to insist on at least some
details before the story comes into the Sprint. They become more
serious about fixing impediments.

The Daily Scrum

Scrum has a daily team meeting that we call the Daily Scrum or
the Daily Stand-up.

The maximum time-box is 15 minutes. If the team is seven people,
the minimum time-box is 7 minutes.

The whole team attends. Others may attend, but they must be silent
during the meeting. (More on this below.)

Note: The Scrum Guide implies to some that the PO should not
attend. Jeff Sutherland has clarified this. You are still doing Scrum
if the PO does not attend, but he recommends that the PO attends.

The team members answer three questions:

« What did I do or get done yesterday?
« What will I do or get done today?

The Core Sprint Events 32

« What is my biggest impediment?

Each person speaks for himself or herself.

The Scrum Guide mentions that the actions should be about the
Sprint goal. So, for example, you do not get to talk in this meeting
about your shopping yesterday.

Why the biggest impediment? We find one of the biggest problems
is no problem — usually expressed as “no impediments.” People
want to pretend that they themselves are perfect and that the world
around them is perfect. There are some who wish to wallow in
problems and worries all the time, too. But in the Daily Scrum,
we want to hear the biggest impediments quickly. It is likely that
one of the seven will be important enough for the SM to work on
today, immediately.

This brings up the problem of honesty. Humans are not always as
honest as we would like. In one specific area... each person tends
not to be completely forthcoming about his or her own weaknesses.

Now, we don’t need to hear about everything, particularly non-
work stuff, but work-related “areas for improvement” — these are
important with Scrum.

Now we get to a key issue. What is the purpose of the Daily Scrum?

One answer is to enable the team to sync up so they can complete
all the stories during the Sprint. This is true as far as it goes.

I think a better way of putting it is this: The Daily Scrum is a
meeting for all the members of the team to get the information they
need to help the team self-organize, self-manage and self-direct
themselves to a higher level of success.

The meeting is generally more effective if the really understand the
purpose.

The Core Sprint Events 33

The Sprint Review

This meeting happens almost always at the end of the Sprint.

We gather the team (the whole team, including, of course, the SM
and the PO) and meet with the BSHs.

We want to learn the truth. What progress have we made? What
mistakes have we made? What do we need to do better? How do
we improve the product so that it is outstanding?

One key phrase: The bad news doesn’t get better with age.
The overall time-box for a two-week Sprint is 2 hours.

I find that most teams at first do not have that much stuff that’s
done; the feedback is also not that extensive. This means that often
the meeting is over in about an hour.

But, you can imagine, after the SM doubles the Velocity and after
the PO starts getting better “requirements” provided, that then the
team will produce a lot more in two weeks, and so the meeting may
need to go to 2 hours.

I think of the Spring Review in two parts.
1. A Short Review

In this short review, I recommend that the PO discusses a few basic
things quickly, maybe summarized on one slide. (Certainly not a
50-slide presentation!)

These basics might include:

« Here are the stories we committed to in the Sprint Planning
Meeting.

« Here are the stories that are done-done now.

« This was our Velocity this past Sprint.

« This was our average Velocity over the last three Sprints, and
with this average Velocity, we expect the current release to be
delivered in X more Sprints (say, two).

The Core Sprint Events 34

« Here were our biggest 3 impediments in the Sprint, and here
are our 3 biggest impediments today.

Then, there might be some discussion. Hopefully the discussion is
about how the business side would like to support getting one or
two of the aforementioned impediments fixed.

So, make this part relatively quick — 10 minutes might be typical.
2. The Demo

People often call the entire Sprint Review the Demo, which is not
so bad, but I think it is slightly misleading.

What do they demo? Well, maybe it is obvious by now, but they
demo (mainly) the new “working product” that has been built
during the Sprint.

Perhaps we should add now that the demos (of each story, one story
at a time, typically) are given usually in the context of the whole
product. That is, everyone can see all the features from any prior
release or sprints as well as all the features built in this current
Sprint.

There can be some discussion of the whole product (as much as has

been built) and what is to be built.

Ok, so we want everyone to give us honest feedback, the best
feedback that they can give us and the most complete feedback
possible. The bad news does not get better with age.

Key Types of Feedback

Anyone can give feedback, but we want it mainly about two things.

1. How much Business Value does the story have now that they
see it?

2. Are there any details that are imperfect? That need to be
changed.

The Core Sprint Events 35

The Demo needs to be prepared (before this meeting) quickly. The
data needs to be prepared. Someone needs to think through how
we will demo the new features. Which examples will we use? Are
they appropriate? Etc. This is important and sometimes hard, and
it must be done in a time-box.

The demo needs to be “narrated,” particularly, at first, by someone
who understands the BSHs. It cannot be so technical that the BSHs
never want to come back. The speaker must engage the BSHs and
then handle their comments and feedback. If this is not done well,
then the BSHs will not come back, our feedback will not be as good
and, therefore, the product will achieve much less Business Value.

Let’s say again: Getting good BSHs that come every time is hard.
Good luck with that problem.

Now, back to the Demo itself.
The Feedback

We need to hear every imperfect detail now. So, if an (imperfect)
BSH does not understand every detail of each story being shown,
that BSH should bring a Subject Matter Expert (SME) or BA or
someone who does understand all those details — and bring that
person now, today!

What we want is perfect feedback about what the customers are
going to want over the whole lifecycle of the product so that we
achieve maximum Business Value over that whole lifecycle. What
we get is not as good as that. We get feedback from humans who
are not the real customers, or at least that’s what I usually see
happening.

Anyone can give feedback. That is, we mostly expect the best feed-
back will come from the BSHs. It is they who should understand
the different customer groups the best (along with the PO).

But, in fact, often the Implementers have excellent feedback. George
may have excellent feedback on a story he did not work on.

The Core Sprint Events 36

Hopefully, a majority of the time we get positive feedback. Yay! We
did stuff well and the customers are really going to like it! Yes!

It is wonderful for the team to get that kind of feedback every two
weeks — wonderful. (Surprisingly, in the past the Implementers
would often go months without getting positive feedback. Well, I
am slightly sarcastic. Often they never got any positive feedback
from anyone who mattered. That is, anyone who represented the
customer well, sad to say.)

Some of the feedback is negative. Sometimes the Business Value
appears to be less than we originally thought. Sometimes some of
the details are not right, now that we can look at them.

To be fair, it is hard to read the mind of the customer and what he
or she or they will want in the future. We do the best we can. We
live and learn.

Deciding among the different opinions

Not everyone agrees on the feedback. One BSH will disagree with
another BSH, the PO won’t agree with an Implementer, etc., etc.

In any case, though, the PO must decide quickly one of the
following:

1. “It’s done, we think the customer will like it how it is” —
Hopefully most of them fall into this category.

2. “Tt needs some changes and here is the complete list of exactly
what those changes are” — A couple of stories can be in this
category. We hope not many.

3. “It needs improvement, but we are uncertain about the de-
tails” — Hmmm. This is not a good category if we want to
get the release done on time.

4. “Wow! Things are mucked up. No one is ever going to want
this” — A story in this category is kind of depressing, but at
least the bad news is not getting better with age. Then we
have to decide: Is there anything within this user story area

The Core Sprint Events 37

that is a real need? Sometimes we realize that it was an idea,
but maybe not a real need for the current release.

The PO must state his or her decisions clearly and also with a
minimum of injury to the egos of the people whose opinions the
PO is ignoring (disagreeing with). Good luck with that.

I guess at this point we should mention: The PO is not always senior
to everyone in the room. Often‘ some of the BSHs are more senior.
Nonetheless, the PO must decide and get it to stick with the people
in the room.

Again, sometimes the BSHs do not see things from the same point
of view. Perhaps their departments or interests are rather opposed.
Nonetheless, the PO must get them to express their differences and
then must resolve them quickly — or at least decide quickly what
to do with the current story.

I'm sure you can imagine how this meeting can be “interesting.”
Final Comments

Sometimes it is useful to have a “wrap-up” section of the meeting
and review the decisions that were made. They review the eight or
so stories and say which ones ended up in which category. Then,
summarize the changes to be made (to a few stories) in the next
Sprint.

Well, technically, a “to be improved” story does not have to be
improved in the next Sprint, but almost always that is that right
thing to do for everyone.

We also strongly recommend asking these two questions of the
group. These questions can be asked many ways, but here is our
suggested wording.

At the beginning of the meeting, after all the stories have been
quickly mentioned, ask: “Did we work on the most important
stories? Now with 20-20 hindsight, should we have worked on
another story instead?”

The Core Sprint Events 38

Often this question will reveal new learning. For example, a new
story for this release might be identified.

And then, after all the stories have been shown, ask: “Seeing all
these stories, do they make you think of any stories we should add
to the Product Backlog?”

Again, sometimes a very important story will be identified at this
point.

Remember what Buddha said: “Everything changes, nothing re-
mains the same.”

More specifically, we are always discovering ourselves and each
other. As things change, we then start to want different things
in the product, or we (the builders) start to understand the life of
the customer in a much different way. Whatever the reason, new
important stories can still be identified. It’s better to identify them
before the release than have the customers tell us of our glaring
omission.

Just because we discover a new story does not mean that the PO
must put it in this release. That’s a different decision.

The Retrospective

We usually think of the Retrospective as the last meeting of the
Sprint.

What is the difference between the Sprint Review and the Retro-
spective? The Sprint Review is about the product. The Retrospective
is about the process. I prefer to put it this way: The Retrospective
is about how we become better as a team — “continuous improve-
ment.”

Who comes to the Retrospective meeting? The whole team: the
Implementers, the SM and the PO. They can invite others, which
might happen sometimes.

The Core Sprint Events 39

One Possible Problem: if the Implementers are afraid of the PO
and are not able to tell the truth if the PO is there, then that is an
important impediment, especially for this kind of meeting. So, the
SM may have to ask the PO to skip one or two meetings until the
SM can get the Implementers to tell each other the truth. However,
the Implementers must all become used to telling the truth with the
PO present very soon. If they can’t tell the truth with the PO there,
well, get that fixed.

What is the time-box for the Retrospective? According to the Scrum
Guide, the Retrospective is 3 hours for a four-week Sprint. This
implies 1.5 hours for a two-week Sprint. I am OK if you use 2 hours
every two weeks.

This meeting is often not done well, or not done at all. (If not done
at all, typically because it was not done well. It perhaps was almost
useless, given the way it is done often out in the field.)

Do this meeting well. We are about to give advice that will make it
a more useful meeting.

What Is the Purpose?

The purpose of the Retrospective is to become better — measurably
better — in some dimension in some way.

Typically, we want to improve Velocity (productivity). This is a
good thing, but it presents problems. If you tell a team to improve
productivity, they usually hear that as “work more hours.”

So, somewhere, the manager and the team have to agree on this:

1. We are not working more hours. We are working 40 hours
per week (or some reasonable number).

2. We will be having more fun. Fun is essential to innovation
work, and we will measure this with the Happiness Metric
(cf. Jeff Sutherland’s blog).

3. We will improve Velocity a lot, 100 percent in the first six
months.

The Core Sprint Events 40

4. We will increase the quality.
5. More BV per story point.

Always you have to discuss these five things together. They won’t
believe it at first.

The purpose could be something other than increased Velocity,
although whatever it is, it usually influences Velocity eventually.
Maybe higher quality, maybe faster learning, maybe better moti-
vation, maybe higher Business Value, maybe more fun, etc.

I like to divide the meeting into two time-boxes.

The first time-box is small. It consists of the following quick
discussions we suggest. (There are alternate ways of doing it, and
once they master the basics, we do recommend changing things
some.)

1. What Went Well?

Take a moment to celebrate the things that went well, and ask
everyone to do more of the good things — and to do those good
things more often.

2. What are the Impediments?
What sucks.

I like to be blunt and honest. Always there were things that sucked.
We were dumb, managers tried to kill us (it seemed), the servers
decided to crash, etc., etc.

It is important that we identify our own imperfections as a team,
that we identify the supposed evil in others, and that we complain
about the world. All of these are true, and it is helpful, up to a point,
to talk about them.

We are identifying the impediments as we did in the Daily Scrum
and we identify some of the same ones (no surprise) along with
some new ones.

The Core Sprint Events 41

Anything that slows down the team, in any way, is an impediment.
A lack of a ping-pong table could be an impediment. Technical Debt
could be an impediment. An interfering manager, a missing team
member, corporate culture, a lack of babysitters — anything could
be an impediment.

Let me emphasize this: It is human nature to be reluctant to
speak publicly about one’s own imperfections. Nonetheless, that
is what we must do. These are always some of the more important
impediments. Because everyone is imperfect, and we can see this
daily (e.g., in the Daily Scrum), it becomes less hard to be honest.

Still, if you are the SM, good luck getting them to be completely
honest, especially at first. What they are used to is this: “The
beatings will continue until the morale improves.” Usually the more
specific version is the blame game. You have to change this.

We already by now (before this meeting) have created an Imped-
iment List with the top 20 impediments. And, if it is a top 20 list,
there are usually 20 things already on the list that we could work
on to improve. Virtually always, most of the “things that sucked
this Sprint” will not break into the top 20 list, but some will. One
new thing might even go straight to the top of the list.

So, one value is: They got some things off their chest, they got to
moan a bit (as all humans must do), they see that most of their
impediments are not that important and they can live with most of
them and move on. This is useful.

The key thing for now is that the Impediment List is prioritized,
based on the benefit/cost of the impediment. Or, maybe it’s better
to say the ratio of the benefit achieved by mitigating it or fixing the
impediment over the cost of fixing it.

So, again, a few of the impediments identified in this meeting will
break into the top 20 list. This is useful also, because we are going
to act on the top impediment.

Next, I recommend the SM Report. The SM has 10 minutes to

The Core Sprint Events 42

“justify his love” for the team. That is, 10 minutes to explain what
he or she has done in the past two weeks to help the team.

« Which impediments has he or she worked on?

« Which impediments has he or she taken to a manager?
« Which impediment(s) has or have been fixed?

« How much has the Velocity improved this Sprint?

And the team (and the SM) expect the Velocity to usually improve
every Sprint by a small amount. (Rome wasn’t built in a day.) The
rest of the team starts to see how the SM is useful; and they are
surprised. The SM is also surprised that they did not think (before)
that he or she was valuable — but now they do.

Next, the SM leads the team to quickly prioritize the top four
impediments (from the top 20 list). The SM can add information
(as can the PO), but he or she allows the rest of the team (not the
SM) to decide the priorities. Even if they are wrong, they are right.

Now, the whole team spends the rest of the time (most of the time)
working together on the top impediment. (OK, use some common
sense, but that should be the normal pattern.)

Here are three things the team can do together.
1. Devise a Solution Together.

This is a phrase Ken Schwaber likes. They take the responsibility
to define how to fix the top impediment. Again, some impediments
cannot be fixed, but can only be mitigated or the impact can only be
mitigated (reduced). This might take some time. We might include
root cause analysis (RCA).

2. Plan the Execution.

We figure out how to implement the fix. Which steps? Who should
be involved? This might lead to the observation that the fix is costly,
and maybe this isn’t the impediment with the best ROL

The Core Sprint Events 43

3. Prepare a Business Case.

We work together to prepare a business case to take to a manager
and ask for a “yes” — a yes to some money or to getting some people
to work on it or a yes to allowing the change to happen.

We recommend that you use the A3 approach to Kaizen, but
specifically that the business case be prepared much like an A3
report would be done. In that case, you might include the following
sections:

« Problem

« Solution

« Benefits (from the solution)

« Costs (to implement the solution)

« Action Items (e.g., steps to be taken immediately after ap-
proval)

+ Measures (how we will measure after the fact that the solu-
tion actually improved things... or maybe not)

It would be fairly typical that the business case would not be perfect
at the end of the Retrospective time-box. We expect the SM to move
it forward and improve it, and then the SM (or the SM and the rest
of the team) will present the business case to the right manager.

If it is approved, it is up to the SM to keep driving it so the
impediment is fixed quickly. We want most fixes to be done within
two weeks; and by the end of two weeks, we want to already be
starting to accrue benefits (e.g., higher Velocity).

These comments raise a couple of points.

First, the managers should be expecting these business cases. And
wanting them.

They should expect the team, at first, not to be good at presenting
these business cases, and the manager should start to teach the team
how to prepare a better business case.

The Core Sprint Events 44

Next, the managers should be expecting to say “yes” and expecting
change. My saying: “If you don’t change things, nothing’s gonna
change.” So now, the team is helping the managers become more
effective.

The Artifacts

Now we turn to the artifacts in Scrum.

First, we have to be clear: There can be many artifacts for a team,
depending on the work and how you define artifact. So, the main
artifacts we will discuss here are what we consider the core Scrum
artifacts.

Here’s my list:

+ The Product Backlog

« The Sprint Backlog

+ The Scrum Board

« The Sprint Burndown Chart
+ The Release Burndown Chart
« Working Product

« The DOD

+ The Impediment List

My list is not what you will find in the Scrum Guide. So, when they
are not mentioned there, I will explain that a bit later.

Do we have to use all these artifacts every time? Well, of course
not. Use common sense. If you are quite confident that an artifact
won’t help you in your specific situation, by all means do not fool
with it. Just be careful.

“Common sense is not very common.” That’s a Ken Schwaber
saying, I believe. What I think it means is that we are so easily
captives of the old ideas, so we do not see the truth of the current
situation well enough. Often, we do not make the right decision. Be
careful!

The Artifacts 46

Should you have other artifacts? Do I recommend others? I often get
these questions. The answer is probably “yes” in both cases. Again,
we are only discussing the most basic Scrum artifacts.

Let’s mention one more artifact (or someone could call it an
artifact). That is, the Scrum tool.

[stopped here]

There are many Scrum tools out there — none are identical. They
do many things and they vary a lot, but, typically, they hold the
Product Backlog and the Sprint Backlog. Often, they do more, such
as generate the burndown charts or show a Scrum Board, etc. And
then some add reporting.

Well-known Scrum tools include using Excel, Rally (recently re-
named within CA), Version One, Jira, Pivotal Tracker and many
more. Some of the Scrum tools (other than the ones named above)
used to be lame a few years ago; now most of them are pretty
decent.

You probably should have a Scrum tool, even if it is only an Excel
sheet. Our goal in this paper does not include addressing the Scrum
tool as one of the artifacts.

You should have a Scrum tool, but do not take it very seriously. The
people are far more important than the tool.

OK. Now let’s discuss each artifact I mentioned above.

[stopped here]

The Product Backlog

The Product Backlog is usually the first mentioned of the artifacts.
In some sense, Scrum starts with the Product Backlog, or at least
the first Sprint cannot start without a Product Backlog.

The Artifacts 47

The Product Backlog is a list of all the work for the team. We also
think of the Product Backlog as the list of all the new features for
the current product.

User Stories

The name of the items in a Product Backlog is what we call Product
Backlog Items (PBIs). We also speak of those items as User Stories,
especially if they are in the User Story format.

The User Story format is:
As an <end user role>
I can <do something>

So that <explain purpose or next step or because>.

Who Can Contribute?

It is important that the Product Backlog include all the work of the
team. (More on this later.)

Anyone can contribute to the Product Backlog. This is important
and often misunderstood. Any team member can propose PBIs, any
BSH can propose PBIs and any customer can propose PBIs.

The PO can judge an item out of scope, improve the quality of an
item proposed for the Product Backlog and even re-write PBIs.

Prioritized

The Product Backlog is prioritized. The final decision maker on the
priority order is the PO. By this we mean that anyone can suggest
things to be considered in the prioritization or suggest new data
that would affect the prioritization.

In general, we first say that the prioritization is mainly based on
Business Value or the value to the end customers. Later we say
that prioritization should mainly be by the potential on investment

The Artifacts 48

(POI), which is the Business Value divided by investment with
investment being mainly cost or effort. In truth, there are other
factors that contribute to POI as well (e.g., dependencies are a key
factor).

Product Backlog Length

The Product Backlog should go out a reasonable amount. Jeff
Sutherland has said a typical length is one year for a typical product.
Surely this could be less for some products and more for others. In
my experience, many Product Backlogs do not go out far enough.

This is a serious problem because it means that the PO is choosing
from too few items “what is the most important PBI to work on
next” That means that the team is typically not working on the
most important thing it could be working on.

The 80-20 Rule

In general, for a given Product, the Product Backlog should help
the PO do the 80-20 rule, or something close to it. That is, the team
does 20 percent of the work and delivers 80 percent of the Business
Value. This is hard to do (for many reasons) but focusing on this
issue is very useful. For example, if the team did 20 percent of the
work and got 50 percent of the Business Value, that would be a
serious and very useful improvement.

Kinds of Work

The Product Backlog should include all the different kinds of work
the team must do. The Product Backlog should include any legacy
bugs, meaning bugs or defects that existed before the team started
this working on the product. The Product Backlog also typically
includes technical debt (sometimes expressed as technical stories).
So, the PBIs include stories to fix the technical debt.

The Artifacts 49

If we are automating QA tests, then the Product Backlog probably
needs to include PBIs to automate the existing manual tests or needs
PBIs for the work to set up or improve the automated testing.

Sometimes we have a separate list of “small enhancements.” Of-
ten these enhancements are small changes to the existing set of
features. When we describe the vision of the next release of the
product, it does not include small enhancements to the existing
features. Hence, these small enhancements are often work outside
the vision of the next release — except that someone feels we must
do some of them.

There can be other categories.

We do not have separate Product Backlogs. Each team only has
one Product Backlog. Hence, “everything” (all the different types
of PBIs) must be prioritized together in one Product Backlog. This
is not always an easy job.

Product Backlog Refinement

The Product Backlog must be refined or groomed over time. New
items are identified later and may be identified soon as part of the
current release, later release or may never be built.

Product Backlog Refinement or Grooming includes many things.
Among them are identifying new stories, breaking up larger stories
(stories too big to go into a Sprint well), putting story points on
stories, adding or revising the BV points on stories, adding details
to stories (as much as the team needs), reorganizing the order of
the stories, etc.

We have a whole book to describe Product Backlog Refinement. See
our book on Agile Release Planning.

The Artifacts 50

The Sprint Backlog

This artifact is different than many suppose. The Sprint Backlog is
the list of stories and the list of tasks for those stories that the team
thinks they can get done in a Sprint. (In my mind, the normal Sprint
should be two weeks in most cases.)

The Sprint Backlog is created in the Sprint Planning Meeting. The
stories in the Sprint (in the Sprint Backlog) come from the top of the
Product Backlog. Again, the team gets to decide how many stories
to pull into the Sprint.

The Scrum Guide describes it a bit differently. The plan that the
Scrum Guide mentions does not have to be a lot of tasks for each
story. Having small tasks for each story is a very good discipline
that most teams need. But, if they get more successful and want to
experiment with that a bit, then fine.

As we said before, the tasks must be small. We want to see (or
maybe not see) that each person is making some progress each day.
So, the small tasks (or very small stories) make that progress clearer.
This clarity enables the team to self-organize better. For example,
key problems can be identified and attacked.

The Sprint Backlog becomes the Scrum Board, which is a kind of
visual management. More specifically, the Scrum Board is a kind
of Kanban board. So, Kanban, or a form of Kanban, is baked into
every basic Scrum implementation.

The Scrum Board is usually composed of several columns and rows.
The columns are often titled backlog, in process, to-be-tested and
done. There is one row for each story and it is expected that only
one story is “in process” at a time. Well, that level of minimization
of WIP (work-in-process) is a bit tight for beginners. Normally, a
team has two stories in process at any time. But in any case, the
situation is usually pretty clear from the Scrum Board, or at least
after a brief conversation about the Scrum Board.

The Artifacts 51

Some people complain that the Sprint Backlog is micro-managing.
Indeed, often the work is more broken down (for the two weeks)
than you often find in a waterfall project, but the team is not being
micro-managed by someone else (or at least that is not the intent).

The team creates the Sprint Backlog. The team volunteers for the
stories and the tasks. The team is not supposed to over-promise, but
only sign up for the work that that data says they have a history
of doing; unless there is a very good reason to believe the team
now can do more. Two examples: Now Person X is back from the
vacation that happened in the prior Sprint, or the SM has fixed
impediment Y and now the Velocity should be higher.

Little things are big, and the bad news does not get better with age.
And so, by seeing the small problems sooner, the team is able to
take corrective action sooner and the impact is greater.

Is the Sprint Backlog perfect right after the Sprint Planning Meet-
ing? No!

So, we expect the Sprint Backlog to be revised and improved as
the team does the work and gets smarter. At least once each day,
anyone on the team can revise the Sprint Backlog. In general, sooner
or later a team member should explain why the Sprint Backlog was
changed, if only briefly.

The Sprint Backlog is pretty darn useful.

The Sprint Burndown Chart

Now we come to the Burndown Charts. You could start with either
one, but let’s start with the Sprint Burndown Chart.

We might first note that the Scrum Guide does not talk about a
(Sprint) Burndown Chart. There is a section in the Scrum Guide
about “monitoring progress toward goals,” which mentions burn-
downs and burn-ups.

The Artifacts 52

I will recommend specifically the Sprint Burndown Chart.

What does it measure? It gives our best guess, as of today, of the
work remaining in the Sprint.

The way I recommend for beginning teams goes like this:

1. In the Sprint Planning Meeting, we create the tasks needed
to complete the stories. I recommend putting hours to those
tasks. I recommend the tasks be small (typically 2-4 hours
each) and that a person (or persons) be assigned to each task.
(This was all discussed earlier.)

2. Each day, the Implementers will get work done and learn.
All of that information leads to revisions of the tasks. For
example, some tasks can be replaced by other tasks. Tasks can
be added. Tasks can be re-estimated. Tasks can be re-assigned
to a different person who then gets to re-estimate the task.

3. Just before the Daily Scrum, the Implementers make all the
changes and put them “in the pot” (by which, I probably
normally mean into the Scrum tool), and then someone
(maybe the SM) can then calculate the net effect and therefore
how much work is remaining now.

4. That enables setting the points shown above (as an example)
and this the Sprint Burndown Chart.

Why?

The key thing is that this report is for the whole team. The team
wins together or loses together. So, the team uses the Burndown
Chart to give them the information they need to self-organize,
self-manage and self-direct themselves to greater success (or less
failure).

Some of the action by the team is not discussed. It happens sub-
consciously. Sometimes the Sprint Burndown Chart leads to a
conversation, perhaps like the following:

The Artifacts 53

Person 1: Yikes, we’re screwed.

Person 2: Damn, well we have to do something. (And
in that tone from experience they know that means fix
an impediment.)

Person 3: 1 think [X] is the biggest thing to fix now.
Person 4: I think the thing to do is [Y].
Person 5: I'll get started on that. Who can help me?

In this little conversation, you see the team figuring out what to do.
The report is not primarily for others, but for the team itself. They
are the adults.

And we look for emergent leadership, people who rise to the
occasion and make it happen. So, we expect the team members,
possibly any one of them, to take this information and do something
with it.

Transparency

The Sprint Burndown relies on the team being as transparent,
honest and accurate as they can be about all the work remaining —
to everyone.

For example, if the team decides they will not complete a story,
they might decide to stop working on it and focus on stories they
still hope to complete. This is fine (or at least understandable that
this will happen sometimes). First, they must be honest with all the
people who care that that story is now “dead.” Then, they can take
those related tasks out of the “work remaining” so other things go
roughly as expected — so that day we “burndown” more.

There is no point pretending that this day went well when it did
not. And there’s no point in pretending we made more progress

The Artifacts 54

than we really did. It does not help. It does not force us to make the
changes we need to make if we “play pretend.” Equally, this can be
challenging to managers who too readily want to intervene if things
do not go perfectly in one day. One day is not a problem. Even a
“failed” (weak) Sprint is not a problem, so long as we eventually are
successful.

Innovation work cannot be predicted with great accuracy and
surprising things happen.

We recommend being willing to fail. We do not recommend for-
going all planning and all management. In fact, we recommend
spending more (good) time on those things so that over time we
end up being more successful; in large part by putting all our heads
together to solve the problem.

The Release Burndown Chart

Now we come to the Release Burndown Chart.

What is the idea? The first idea is that we want to hit the date, but
let’s agree that things can be a bit more complex.

A few side notes:

+ There are many different kinds of situations in Scrum. We
have continuous delivery (CD) now. Scrum still helps in that
situation, but it is different.

+ We also have people releasing every Sprint into production.

« The word “release into production” is fairly commonly used
in software. It is probably less commonly used for other
products, and we think Scrum is also very suitable for any
new product development. So, if you use different words,
please translate.

The Artifacts 55

+ So, if we have CD or are releasing every Sprint, of a of
a Release Burndown Chart is not meaningful as such. The
concept of a Product Burndown might be useful instead.

So, assuming you are taking two Sprints or more to produce a
product (six Sprints is a fairly common number to use as an
example), then why do we want a Release Burndown Chart?

Why?
Two reasons come quickly to mind.

One is to measure progress. If we start at 120 SPs of work and get
down to 60 SPs, then we are in some sense 50 percent done. Why
is that useful? Because I think it gives us the transparency to “take
arms against a sea of troubles, and by opposing, end them.” It makes
us cut through the crap and get stuff done on time.

This keeps managers from canceling projects that have made signif-
icant progress. (That has been done to waterfall projects, unfairly.)

So, I am suggesting that the common (not universal) practice in
Scrum is to (eventually) set a date. We have a stable team —
therefore budget is fixed — and the flexible part is scope (or how
many stories will we get done in the time-box). Another flexible
part is how much the SM will raise the Velocity of the team.

Here an example picture:
[To be added]

One axis is story points, or the total of the story points for all
the stories that are “remaining” — we are measuring the “work
remaining.” The other axis is time, divided into six Sprints. So, we
measure work remaining every Sprint and get transparency on that.

Side note: One of the purposes of the Release Burndown is greater
transparency (this benefits many things). Obviously, humans are
not always honest. So, for the Release Burndown Chart to be
effective, the team must be honest.

The Artifacts 56

“Work remaining” means that we can also potentially redefine all
of the work. We can add stories, we can remove stories, we can
break stories up (or break them down, if you prefer), we can re-story
point stories, we can redefine stories or re-write them. So then, the
Release Burndown becomes as accurate as humanly possible as of
that moment in time.

But why have a Release Burndown Chart?

The second reason is because this information enables the team
to self-organize (around a common goal of hitting that date), self-
manage (as if they were adults) and self-direct themselves to greater
success — or at least less failure.

Of course success and failure are not completely defined by hitting
a date. but the date is the key element. The date is important because
customers care so much about the date (or getting it earlier), and
business (for a variety of reasons) cares about the date.

Side note: We discuss elsewhere at more length that happiness,
fun and sustainable pace are also very important. While we are
increasing Velocity, we must also insist that happiness and fun is
going up and hours are normal (I'll say 40 hours per week, but we
could debate the exact number of hours). More on this elsewhere.

So, anyone in the team can use the Release Burndown Chart. It is
mainly for the team.

Imagine a discussion after Sprint 3, heading toward a release in
Sprint 6:

Person 1: Wow! We are way over by 20 story points.

Person 2: Yes, we're not going to make that date if we
continue like this. We have to hit that date. [In real life,
hitting the date is not always that important, but let’s
imagine in this case that it really is.]

The Artifacts 57

Person 3: We still have some big stories. We need to
break them down and see if we can move some of those
story points to the next release. You know what Pareto
says.

Person 4: ScrumMaster, what can we do to increase
Velocity?

Person 5: If we could fix the [X impediment], I think
the Velocity would go up five points.

Person 6: We need to stop scope creep, too. If anything
new comes in, we have to tell the business side that
something has to go out.

Person 7: I'll take some time in the next two days to
help with the [X] problem.

This conversation all started with an observation about the Release
Burndown Chart. We are assuming that the team can act like adults
and, to some degree, control their own destiny. It may not happen
or may not be able to happen every time, but it can happen often
enough.

Notice also that there was no discussion of working overtime or on
weekends.

The Working Product and DOD

Now we come to the working product. The big phrase is “potentially
shippable product increment.”

What it means is first this: At the end of a Sprint, we expect every
story that the team committed to in the Sprint Planning Meeting is
“working” by the end of the Sprint.

The Artifacts 58

Working means built and tested — fully working (at the story level).
Working does not mean that we have built a full Minimum Viable
Product yet. For the moment we are assuming that scenario where
it takes multiple Sprints to build a Minimum Viable Product.

We define working product mainly through the Definition of Done.
We score points in the game (we earn story points for this Sprint’s
Velocity) by getting all the items on the DOD done for a specific
story. It’s all or none — either the story is fully done and we get all
the points, or the story is partly done (or maybe un-started) and we
get zero points.

The DOD must include two key things: The product is well built,
and the product is well tested.

The stronger the DOD, the better. There is strong bias toward the
“quality is free” idea. That is, the sooner you build in quality,
whatever that costs you, it is much cheaper (in every way) than
building in quality later.

Why?

Why do we want working product at all? I mean, people will say
that it is slowing down and that it is lots of trouble — and it is
trouble. People will say “it is more work for me” — and it certainly
will at least appear to be more work for them (although if done
correctly, not more work for the team).

One answer: “The bad news doesn’t get better with age.” That is,
identifying and fixing the bad news now is much cheaper than
fixing it later.

Another answer: We get better feedback from working product
than from the documentation. Getting better feedback is very
important. It is so easy to misunderstand what the customers (end-
users) want. This bad news does not get better with age. If we
spend less time building what they don’t want and more time
building what they do want, we usually get done quicker. (OK, a
bit of sarcasm, but getting done quicker is very important in several

The Artifacts 59

ways.)

Another answer: We have a better gauge how completed (what
percentage complete) we are. In waterfall, the schedule would tell
us we are 90 percent complete and then awkwardly ask ourselves
how much longer to complete the last 10 percent. (It was always a
bad joke.)

Now, we identify the story point for all the work in a release
(e.g., 120 story points in total) and ask how many story points are
completed (e.g., 60SP). Then we would know how much of the work
we have done (e.g., 50 percent) and how much longer it will take to
deliver (roughly another three Sprints). This is much more accurate.

And what we know (so much better, with more confidence) is
much more useful. For example, managers are less likely to cancel
a release that is truly 50 percent done with many great features
already built. Features that they can see, taste and feel — fewer
stupid decisions.

What’s Included in the DOD?

Here’s an example we typically use for software stories; conceptu-
ally the basics are the same for about any product.

I always mention “better requirements” because that is so impor-
tant. Really, better requirements are part of the ready-ready criteria
(some people are calling this the Definition of Ready or DOR), but
it is important to mention now. This is key input to getting a story
done.

It is amazing how much more work they can get done if they know
what they are doing, and how much less work they get done if they
have no flippin’ clue what they are doing — by this, I mean if the
requirements are clear. (The saying also applies to their skill sets,
but normally this is much less of a problem.)

Here’s an example of starting the DOD:

[good Req (better than ever before)]

The Artifacts 60

« Analysis and Design: keep this short
+ Coding
+ Code Review: fix problems
+ Testing
— Unit Testing: automated, fix all bugs
— Functional Testing: automated (80 percent), fix all bugs
— INT/REG Testing: automated, fix all bugs
— Any other testing...

« Documentation

PO Review: fix any problems

The DOD is used to decide whether your team scored the two story
points on Story 38 or not. It’s part of the “rules of the game” for the
referee. There are no partial scores — it’s either done-done or not
done.

A Few Comments...

We want clean, good code, well-written code; code that anyone
could understand and modify.

We want to fix all the bugs. OK — we do allow people to come to
the PO and make a case that “this bug does not have to be fixed
ever” That’s the only argument, that we will never have to fix this
bug or defect; never, ever. (Remember: The bad news does not get
better with age, and you have to slow down to go fast.) Very rarely
the PO may agree not to fix the bug or defect now. The bug is then
moved to an “issues” list. Usually at least half of these bugs (so
moved) must be fixed later at much more cost. You shot yourself in
the foot.

Functional Testing is called lots of things. It is the testing done by
your good QA or testing people.

We recommend that some documents are updated every time we do
a story. There is a longer discussion about which ones those are and
exactly what that means. No documentation is unacceptable, and

The Artifacts 61

no documents being updated (however much or little) each time
we do a normal story is something I just cannot imagine happening
with any professional team.

The PO Review is important. We want a mini-demo each time a
story is done, or almost done. The PO can say, “Now that I see it, it’s
not quite what the customer will want,” and ask for some changes.
The PO cannot add all or part of another story at this point.

The Doers will say, “But we built it according to the spec,” (and
usually they will be correct about that) and then ask, “Why wasn’t
this new information in the spec?” (the enabling spec).

There is not a happy answer to that question. The Doers should
have asked the question earlier and the PO should have answered
the question earlier (whether asked or not). Nonetheless, we have
to accept that the PO (and others) will still learn things later than
they should.

This practice does not allow the PO to be irresponsible and learn
just anything later. But, we must accept that once he or she sees the
built story, the PO may discover that it must be changed. As long
as the change is within the scope of that one ticket (that one story),
then the change must be made before that story is done.

Have we really made progress if the customer will not be happy?
No. So, it ain’t over ‘till the customer is happy (or until the PO
thinks the customer will be happy).

Is the PO always right? No, but we have to have some independent
person decide quickly. The PO (or anyone he or she designates) is
that person.

There should be some thoughtful discussion, such as, “Why didn’t
we discover this problem earlier?” It is not a blame game, but rather
a search for the root cause and an attempt to become better as a
team.

We want about one mini-demo of this sort each day. (I am assuming
eight or more stories per Sprint.) So, for example, all the testing is

The Artifacts 62

not done at the end of the Sprint. Most of the eight or more stories
should be done before the last two days in the two-week Sprint.

The Impediment List

The most important thing a ScrumMaster does is remove impedi-
ments. This is easy to say, since anything that needs to be fixed or
changed we define as an impediment. Maybe a bit more accurately:
The fact that it has not been fixed yet is an impediment.

What Is an Impediment?

Just about anything can be an impediment, but how do we define
it? One way: Anything that is slowing down the team.

If you define them that way, then there are hundreds or thousands
of impediments at any one time — hence the need to have a list and
prioritize it.

Here are some examples of the varieties of impediments:

« Technical debt

+ A bad boss

« Someone who does not understand Lean-Agile-Scrum

+ A hurricane

« A power outage

« A server that falls over

« Lack of automated testing

« Continuous integration that is not good enough yet

« A culture that does not fully support Lean-Agile-Scrum

 The matrix organization

« Distraction to people on teams or to whole teams

« Having the team work on more than one release at the same
time

+ A team room that is too small

The Artifacts 63

« Insufficient skill sets on the team

+ A PO that is not good enough as a PO yet

« Confusions about what the story is

+ Unresolved technical issues

« Inability to make decisions quickly (by the PO or by people
in the team or by people outside the team)

« Someone on the team who is not a team player

« Lack of self-organization on the team

« Lack of knowledge about method X

+ Lack of DBA skills within the team

+ Need to refactor the architecture

« Lack of baby sitters for some team members

« Someone getting a divorce

+ The company recently had a re-org

+ One person distracting the team too much

So, to name broad categories of impediments, we might have a list
like this:

+ Technical impediments

« Blockers to specific stories

+ Organizational impediments

+ Culture

« Insufficient education or training on Lean-Agile-Scrum
« Insufficient knowledge or skill sets

« People issues

« Things not working that were working before

« Basic things (e.g., lack of team room)

« Things outside the company (e.g., the weather)

But really about anything could be impediment if it slows down
the team.

Issues About Impediments

The Artifacts 64

Impediments are not only blockers.

We mentioned blockers, which is not always a well-defined term.
Typically, blocker means an impediment that stops one story, and
blockers can be important impediments. The key thing to remember
is that blockers are not the only type of impediment. There are
many other types.

Impediments can (and always do) include “things around here that
have been here for ages that no one has ever tried to identify, much
less fix.” That is, we are asking fish to identify water as the problem.
It is almost that bad and that hard.

So, you have to ask the team (and others) to think much differently,
imagine that anything could be fixed and put those “it would never
be fixed” things on the list. And then, especially if you are the SM,
you must figure out how to address them.

Addressing Impediments

Some impediments are initially expressed more as symptoms than
as root causes. So, very commonly, we must identify the root cause.

This means someone — probably the team — must do some form
of root cause analysis (RCA). This might be done with the “Five
Whys” technique or with other tools.

Some impediments can be fixed, and some impediments cannot.
The ones that might be fixed, we normally recommend two weeks
of fixing — if that is possible, which we find usually is if you work
hard to identify the right two weeks of work — to try to get some
intermediate benefit.

Once again, some impediments cannot be fixed, such as a hurricane.
But even those impediments can be mitigated; that is, the impact
on the team can be mitigated almost always. So, we take mitigation
steps.

Product Backlog
Refinement

We have a book on Agile Release Planning. In that book we discuss
this topic (PB Refinement) at some length.

The key idea is that the Team is continuously refactoring the
product backlog, in each sprint.

First, we recommend 2 week sprints. And a Team of 7 (including
the PO and SM).

So, in those conditions, we recommend a “short-term” meeting in
the second week, before the Sprint Review and the Retrospective.

In that meeting the Team gets to vote on the quality of the details
provided (or organized) by the Product Owner. The key purpose of
this meeting is to enable the Implementers to give their feedback
on the information (details) that the PO has had prepared for the
8 stories in the next sprint (I recommend that each sprint have at
least 8 stories).

Any one Implementer can blackball a story.

And it is fairly typical for one or two “last” questions to be
identified, and the PO then needs to get those answered before the
next Sprint Planning Meeting.

The other Refinement (or Grooming) meeting is what I call the
Long-Term meeting, in the middle of the first week of the Sprint.
There, we can re-do anything that we did in the initial Agile
Release Planning. Find new stories, break up stories, vote or re-vote
Business Value Points, vote or re-vote Story Points, re-organize the
Product Backlog based on an improved understanding of Velocity
or Risks, Dependencies, Learning, or MMFS/MVP.

Product Backlog Refinement 66

All this is explained in more detail in the Agile Release Planning

book.

Some Additional Topics

On the following pages we cover some key additional topics quickly.

You Must Self-Organize

It is fine to give you the Scrum framework, which is bare bones.

What is essential is for the Scrum team to use that framework
to help them self-organize successfully around getting their work
done, their goal or mission accomplished. In fact, probably more
essential than Scrum is that the Team self-orgaize.

All adults, even most children, know how to self-organize.

The problem is that all adults have also learned “mental blocks” to
self-organizing.

It is not that the people cannot do it at all, but just that they will
stop doing it, or slow down a lot, in certain circumstances.

Example One: They feel they are not supposed to self-organize, for
example, they have been trained that the boss will tell us what to
do.

Examples Two: They have been trained that “we cannot do X until Y
has been completely done” and the signal that Y has been done has
not be given. One can of course imagine that that idea fully makes
sense....and one can also imagine where waiting for perfection on
Y will never come, and so it does not really make sense.

Some Additional Topics 68

Putting It Together

What is Scrum? Is it the practices? Is it the ideas? Is it mainly the
values?

Many say that if you do not “get agile”, then you can do a bunch of
practices, but it won’t make much difference.

I am not sure that is true, as in causation.

Certainly the more one gets agile, the more one does it well and
with the right intention. And that will make a difference in terms
of results.

In any case, you must put Scrum together with your people. You
and the Team must figure how to make it work.

This is hard in some ways. A common way is that people will not
like to tell the truth (often about themselves) or they will not see the
truth (eg, in a Sprint Review). Maybe Scrum is somewhat counter
to the existing company culture.

You and the Team and others must put it all together for you.

Another thing. If you are doing software, then you must meld
Scrum and the Team with, really and eventually, all the other good
practices in XP (Extreme Programming).

If in another context, then you all must meld it with other ideas
and practices.

This is work. It can be hard. There are many to guide you (and you
need to ask for help). It is quite do-able.

Managers and Scrum

Managers are essential in Scrum.

In what way does he mean that?

Some Additional Topics 69

First, I think he would say that managers must help the Teams learn
how to self-organize. Or self-organize better.

Then we must explain the new role of a manager in Scrum. Reading
the old reports will not cut it. It is actually a better life, where your
real skills come into play. A good manager is invaluable.

But, secondly, a manager must do something if a Team is self-
destructing. If the Team is about to drive off a cliff.

*kk

Giving support for self-organization is not the only thing a good
agile manager does.

The next key thing is to support removing impediments. For a
Team, the impediment-remover-in-chief is the ScrumMaster. But
the Team must always get help from other people. And often help
requires that the manager say yes. Yes to giving people, or money,
or just approval.

Allocating these resources is an important job of the managers.

We need to also talk about servant leadership, and leadership in
general, within the firm. But that is for another day, outside this
fairly brief Scrum Intro. .

Change and Scrum

Just doing Scrum starts to change things.
And every time you fix impediments you are changing things.
So, change is part and parcel of Scrum.

Let us state that more strongly. If you are not notably changing your
situation, you are not doing Scrum right. Changing things can be
many things, almost anything. Whatever needs to change the most
to help the Team be happier or more effective. Or both.

Some Additional Topics 70

But we must be a bit more honest. When you start to do Scrum, it
starts to change everything. At least that is what is commonly said.
Mostly true.

Neither I nor Scrum are prescriptive about how fast change must
happen.

Scrum Values

There are five Scrum Values: commitment, courage, focus, openness
and respect.

It is through Scrum that the Team learns to live these values more
fully.

It is worth thinking, from time to time, what those words mean,
and specifically, what they might mean in the context of working
together as a Team.

Ideas Behind Scrum

First we must mention the Agile Manifesto.
Individuals and interactions over processes and tools.
Working software over comprehensive documentation.
Customer collaboration over contract negotiation.
Responding to change over following a plan.

One could speed some paragraphs trying to explain what those lines
really mean.

Then we have the 12 lines of the Agile Principles. Here is my
summary of them, very quickly.

1. The Customer is important. Deliver something useful fast.

Some Additional Topics 71

2. Welcome change, or at least accept it. And do the best you
can with it.

3. Deliver working software more frequently.

. Business people and developers must work together daily.

AN

We want to set the Team up for success, with motivated
individuals, and then we trust them.

Use face to face conversation more. Strongly preferred.
Working software is the primary measure of progress.

We all should work at a sustainable pace.

o »® N

Technical excellence and good design are key to achieving the
benefits of Agile.

10. Simplicity is essential.

11. The best solutions arise from self-organizing teams.

12. The Team regularly reflects, learns, and takes action to be-
come better.

Then there are LOTS of other ideas behind Lean-Agile-Scrum. I will
write a book that at least lists them. But let me mention two or three
now.

One is the 6 Blind Men and the Elephant story. Google that. This
is an ancient story, we don’t know how old, but we do know that
Buddha used it.

To me, the key point is that we think that no one person understands
the whole elephant, and that each person touching the elephant
(each team member) has something valuable to say, that will help
us. And that, it is the Team’s job to work and “fight” and discuss
with each other, and discover or comprehend, more of the elephant
as soon as possible.

Another key idea: The bad news doesn’t get better with age. That
is, it helps to be honest with ourselves about the bad news, and then
deal with it sooner.

It is also meant to be said in a somewhat funny way, so that the
fear of mentioning the bad news goes away. So that the shame of

Some Additional Topics 72

having made a mistake (and normal human mistakes are only one
of many sources of bad news)... are not so hard to mention.

Another key idea: experimentation and learning.

Knowledge workers learn together. And mainly by doing exper-
iments and seeing how they turn out. We are learning our way
through a complex problem set that has multiple dimensions. (Some
examples: What are the needed features now? Who understands
the details? How much time can we take? What should the product
look like? What would form a minimum viable product? Will this
new technology work? How do I understand these new people I am
working with? How can we work together more effectively?)

Experimentation of course reminds us of the famous story of Edison
and the 10,000 light bulbs.

And, more generally, experimentation means that we will have
successful and unsuccessful experiments. Or, to put it Edison’s way,
all experiments are useful but only some have positive results.

This of course brings up Yogi Berra’s saying: “I knew I was gonna
take the wrong train, so I left early” That is, we have to allow
contingency for “mistakes” (in the experiments) and also mistakes
(those things that happen with human beings). And for other
things (Ex: the US recently had Hurricane Michael hit the Florida
panhandle).

There are many many other key ideas that support Lean-Agile-
Scrum. More to discuss later.

You should be learning and re-learning these ideas with your Team.
That learning will help them do Scrum (and Agile and Lean) more
effectively.

Recommended Reading

ScrumPLOP.org” — We cannot recommend this site enough. First,
it is a list of patterns. We love patterns. Second, it is available 24/7.
Third, it is curated by Jim Coplien and Jeff Sutherland. Enjoy!

If you do not know about Pattern Languages, read the Wikipedia
article here, https://en.wikipedia.org/wiki/Pattern_language. You
might want to read, or at least look at, Christopher Alexander’s
book, “A Pattern Language”. The idea has, at least in some way,
been around for eternity (one imagines), but Mr. Alexander (an ar-
chitect) is famous now for several books, and “A Pattern Language”
is maybe the one that made the concept more well-known recently
(he has other books that also helped). Many people in Agile were
strongly influenced by his Pattern Language idea. Jeff Sutherland
speaks of Scrum being a collection of patterns.

Toyota Production System by Taiichi Ohno. Strongly recommend
this book. Seems to be about automobile manufacturing. In fact, it
is about your work.

Extreme Programming Explained by Kent Beck and Cynthia An-
dres. If you are doing software, once you get the basics of Scrum
going, you must start adding things from XP (as it is called).

Scrum by Jeff Sutherland.

Agile Project Management with Scrum by Ken Schwaber. Very
useful because if has small stories that explain, in story format, lots
of ideas and key issues around Scrum.

*http://www.scrumplop.org/

http://www.scrumplop.org/
https://en.wikipedia.org/wiki/Pattern_language
http://www.scrumplop.org/

Some Relevant Sayings
and Quotes

“I learned this, at least, by my experiment; that if one advances
confidently in the direction of his dreams, and endeavors to live the
life which he has imagined, he will meet with a success unexpected
in common hours.” — H.D. Thoreau, Walden

“Whether you think you can or you can’t, you're right” — Henry
Ford

“You miss 100 percent of the shots you never take” — Wayne
Gretzky

“If you don’t set goals, you can’t regret not reaching them.” — Yogi
Berra.

“Take it with a grin of salt” — Yogi Berra.

“Things should be as simple as possible, but not simpler” — Albert
Einstein.

K.S.S. (Keep It Stupid Simple)

“Do the simplest thing that could possibly work, and then test” —
Ward Cunningham.

“I've missed more than 9,000 shots in my career. I've lost almost 300
games. 26 times I've been trusted to take the game winning shot and
missed. I've failed over and over and over again in my life, and that
is why I succeed” — Michael Jordan

“Everyone has a plan ‘til they get punched in the mouth.” — Mike
Tyson.

The relentless pursuit of perfection. (Lexus motto)

“If you wait for perfection, you might wait too long.” — Joe Little.

Some Relevant Sayings and Quotes 75

“People are remarkably good at doing what they want to do.” — Joe
Little.

“Everything is impossible until it becomes easy.” — Goethe

“The road is long

With many a winding turn

That leads us to who knows where

Who knows where

But I'm strong,

Strong enough to carry him

He ain’t heavy, he’s my brother” — The Hollies (Russell, Scott)

“Most people do not really want freedom, because freedom involves
responsibility, and most people are frightened of responsibility.” —
Sigmund Freud

“All of me
Why not take all of me” — Song lyric, Marks, Simons

“Although human beings are incapable of talking about themselves
with total honesty, it is much harder to avoid the truth while
pretending to be other people. They often reveal much about
themselves in a very straightforward way. I am certain that I did.
There is nothing that says more about its creator than the work
itself” — Akira Kurosawa, a great movie director

“It is more blessed to give than to receive.” — Jesus
“Everything changes. Nothing remains the same.” — Buddha

“Bhikkhus, all is burning” The beginning of the Fire Sermon by
Buddha. The desires of our customers can never be quenched.
Desire (fire) is neither good nor bad, but to avoid the pain, we must
learn to step back from it.

“In theory, there’s no difference between theory and practice. In
practice, there is” — Yogi Berra

“I knew I was gonna take the wrong train, so I left early” — Yogi
Berra; the train in this quote is a subway train in NYC.

Some Relevant Sayings and Quotes 76

“It ain’t over ‘til it’s over” — Yogi Berra

“90 percent of baseball is mental, and the other half is physical” —
Yogi Berra.

“Don’t believe half the lies they tell about me” — Yogi Berra.

“The bad news doesn’t get better with age” Source unclear; in our
work, the bad news gets exponentially worse with age.

“If you don’t change things, nothing’s gonna change.” — Joe Little.
I am being a bit sarcastic. It is similar to the old saying “You can’t
make an omelet without breaking some eggs” — but with more of
a tone of “use some common sense and stop being so stupid now”.
In the end, most change is moving from stupid to less stupid — and
that’s a lot of help.

Quality Is Free. Title of a book by Philip Crosby.

“I went to the woods because I wished to live deliberately, to front
only the essential facts of life, and see if I could not learn what it
had to teach, and not, when I came to die, discover that I had not
lived” H.D. Thoreau, Walden

“One is asked, then, to accept the human condition, its sufferings
and its joys, and to work with its imperfections as the foundation
upon which the individual will build wholeness through adven-
turous creative achievement” Robert Greenleaf in his essay “The
Servant as Leader”

Feedback

Please send feedback (pro or con) to Joe Little™.
Thanks!

mailto:jhlittle@leanagiletraining.com?subject=Feedback%20Regarding%20Your%
20Scrum%20Intro%20Book

mailto:jhlittle@leanagiletraining.com?subject=Feedback%20Regarding%20Your%20Scrum%20Intro%20Book
mailto:jhlittle@leanagiletraining.com?subject=Feedback%20Regarding%20Your%20Scrum%20Intro%20Book
mailto:jhlittle@leanagiletraining.com?subject=Feedback%20Regarding%20Your%20Scrum%20Intro%20Book

	Table of Contents
	Note on Current Draft
	Introduction
	What Is Scrum?
	Why Scrum?
	Scrum Roles
	The Product Owner
	The ScrumMaster
	The Team Role (The “Implementers”)
	The Whole Team

	The Core Sprint Events
	The Sprint
	The Sprint Planning Meeting
	The Daily Scrum
	The Sprint Review
	The Retrospective

	The Artifacts
	The Product Backlog
	The Sprint Backlog
	The Sprint Burndown Chart
	The Release Burndown Chart
	The Working Product and DOD
	The Impediment List

	Product Backlog Refinement
	Some Additional Topics
	You Must Self-Organize
	Putting It Together
	Managers and Scrum
	Change and Scrum
	Scrum Values
	Ideas Behind Scrum

	Recommended Reading
	Some Relevant Sayings and Quotes
	Feedback

